Bliv en del af udviklingen

Efteruddannelse i kunstig intelligens tager afsæt i den nyeste viden på området. Udviklingen af deep learning modeller til analyse og generering af billeder og tekst åbner hver dag nye muligheder. Deep learning er en af hovedteknikkerne i kunstig intelligens og ligger bl.a. til grund for store sprogmodeller som chatGPT. Vi kan indføre dig i de nyeste modeller og deres anvendelse inden for fx miljø- og klimaovervågning, biodiversitet, medicinsk teknologi og observationelle befolkningsundersøgelser.

Styrk dine kompetencer

Natural Language Processing og de såkaldte Large Language Models spiller en central rolle i forskning og udvikling af kunstig intelligens. De bygger på attention baserede modeller, som også danner grundlag for den nyeste billedteknologi. Gennem en kombination af Machine Learning og praktisk erfaring kan du lære mere om de grundlæggende beregningsmodeller, samt hvordan tekst repræsenteres i Machine Learning algoritmer. Du kan også blive klogere på udvalgte, avancerede emner inden for Natural Language Processing og computer vision.

Skræddersyede forløb

Skræddersyede forskningsbaseret virksomhedsforløb giver jer mulighed for at tilrettelægge et kursusforløb for en gruppe medarbejdere.

Det giver jer adgang til den nyeste forskning inden for kunstig intelligens i en kontekst, der passer til jeres virksomhed. I tæt samarbejde med jer og KU’s forskere tilrettelægger vi et efteruddannelsesforløb. Det kan være et forløb inden for specifikke faglige emner i takt med, at ny forskning bliver tilgængelig, og derved byder på nye muligheder.

Kontakt os for at høre nærmere:

Chef for efter- og videreuddannelse:
Sanne Juul Nielsen
sjn@science.ku.dk 
Mob: 93 56 50 11

Kurser

Kursus Niveau Startdato Varighed
Advanced Topics in Natural Language Processing (ATNLP)
The purpose of this course is to expose students to selected advanced topics in natural language processing. Topics include: natural language understanding, representation learning, multitask learning, learning from multiple modalities, deep generative models, reinforcement learning, and generative adversarial learning.
Kandidat November 9 uger
Advanced Deep Learning (ADL)
This course will give you detailed insight into deep learning, covering algorithms, theory and tools. Deep learning is a fundamental technique in AI and it has pushed the state-of-the-art in numerous applications across a wide range of domains. These include object classification in images, generative models for images, and natural language processing with tasks such as automatic translation.
Kandidat April 9 uger
Advanced Topics in Image Analysis (ATIA)
The purpose of this course is to expose the student to selected advanced topics in image analysis. The course will bring the student up to a level sufficient for master thesis work within image analysis and computer vision. Focus is not on specific topics, but rather on recent research trends.
Kandidat September 9 uger
Medical Image Analysis (MIA)
This course will give an introduction to medical image formation in the different scanning modaliti es: X-ray, CT, MR, fMRI, PET, US etc. We will continue with the underlying image analysis disciplines of segmentation, registration and end with specific machine learning applications in clinical practise. A key to achieving success in the medical image analysis is formal evaluation of methodologies, thus an introduction to performance characterisation will also be a central topic. We will use techniques from image analysis and real-world examples from the clinic.
Kandidat September 9 uger
Natural Language Processing (NLP)
Have you ever wondered how to build a system that can process, understand or generate text automatically? For instance, to translate between languages, answer questions, or recognise the names of people in text? Then this course is for you. This course will introduce the fundamentals of natural language processing (NLP), i.e., computational models of language and their applications to text. We will combine machine learning (ML) with a strong hands-on experience.
Kandidat September 9 uger
Signal and Image Processing (SIP)
The course introduces basic computational, statistical, and mathematical techniques for representing, modeling, and analysing signals and images. Signals and images are measurements, which are correlated over time and/or space, and these measurements typically originate from a physical system ordered on a grid.
Kandidat Februar 9 uger
Vision and Image Processing (VIP)
Vision and Image Processing (VIP) gives an overview of modern vision techniques.  Focus is both on conceptual understanding of the models and methods, and on practical experience. The course covers state of the art methods for image analysis including how to solve visual processing tasks such as object recognition and content-based image search and retrieval.
Kandidat November 9 uger

Se flere kurser i kursuskataloget

Du vil måske også være interesseret i